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Visual inspection of hepatocellular carcinoma cancer regions by experienced pathologists in whole-slide
images (WSIs) is a challenging, labor-intensive, and time-consuming task because of the large scale and
high resolution of WSIs. Therefore, a weakly supervised framework based on a multiscale attention
convolutional neural network (MSAN-CNN) was introduced into this process. Herein, patch-based images
with image-level normal/tumor annotation (rather than images with pixel-level annotation) were fed
into a classification neural network. To further improve the performances of cancer region detection,
multiscale attention was introduced into the classification neural network. A total of 100 cases were
obtained from The Cancer Genome Atlas and divided into 70 training and 30 testing data sets that were
fed into the MSAN-CNN framework. The experimental results showed that this framework significantly
outperforms the single-scale detection method according to the area under the curve and accuracy,
sensitivity, and specificity metrics. When compared with the diagnoses made by three pathologists,
MSAN-CNN performed better than a junior- and an intermediate-level pathologist, and slightly worse
than a senior pathologist. Furthermore, MSAN-CNN provided a very fast detection time compared with
the pathologists. Therefore, a weakly supervised framework based on MSAN-CNN has great potential to
assist pathologists in the fast and accurate detection of cancer regions of hepatocellular carcinoma on
WSIs. (Am J Pathol 2022, 192: 553e563; https://doi.org/10.1016/j.ajpath.2021.11.009)
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Hepatocellular carcinoma (HCC), a main subtype of pri-
mary malignant liver cancer, is usually diagnosed in terms
of months of survival and leads to a high mortality rate.1 A
range of imaging techniques can be used to diagnose HCC,
including magnetic resonance imaging, computed tomog-
raphy, ultrasound, and histopathologic imaging. However,
histopathologic imaging is still the gold standard for HCC
diagnosis.2 Assessing the histopathologic grade of HCC
requires visual inspection of cancer regions by experienced
pathologists.3 Nevertheless, visual inspection of cancer
stigative Pathology. Published by Elsevier Inc
regions by pathologists in whole-slide pathologic images is
labor-intensive and time consuming because such images
usually are in the gigapixel range. It also is highly reliant on
. All rights reserved.
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Figure 1 Illustration of data preprocessing. A: The data preprocessing included the following three steps. (1) The whole-slide images (WSIs) were cut into
multiple tiles, and these tiles were classified as normal or tumor by the pathologists. (2) The classified tiles were cropped into the patches, each patch had an
image-level label that was the same as the label of the tile from which it came. The patch sizes were resized as required by the network. (3) Some noisy images
produced by the Red-Green-Blue value of the blood vessels or staining impurities during the generation of patches were added. B: Examples of some patches
generated by preprocessing. Top row: Some normal patches that were selected randomly from the normal patch data sets. Bottom row: Tumor patches that
were selected randomly from the tumor patch data sets. Each column represents different samples. þ, noise images were to patches with an image-level label;
., many patches with an image-level label and noise images were omitted in the figures. Scale bars: 10 mm (A); 75 mm (B).
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expert knowledge because of the varied appearance of HCC
lesions across patients.4 There is therefore a strong demand
for an automatic method for quickly and accurately detect-
ing cancer regions of HCC.

Over the years, numerous methods have been proposed for
the automatic detection of liver cancer regions.5,6 For
instance, Atupelage et al6 introduced an automated method
based on cell nuclei classification in which the nuclear seg-
mentation was performed by a random forest classifier with
pixel-based classification. A drawback of this method is that
the features of each pixel need to be calculated and selected
manually. With the rapid development of deep learning, there
554
has been a surge of interest in the automatic detection of liver
cancer regions focused on using convolutional neural net-
works (CNN).7e9 For instance, Schmitz et al7 introduced a
family of multi-encoder, fully convolutional neural networks
with deep fusion for HCC segmentation. Wang et al8 pro-
posed a hybrid neural network based on multitask learning
and ensemble learning techniques for automatic HCC seg-
mentation in hematoxylin and eosinestained whole-slide
images (WSIs). Although these detection methods provided
promising results, they use pixel-level detection. Pixel-level
annotation is typically generated by experienced patholo-
gists and is therefore time consuming and labor-intensive.
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Case Characteristics in Training, Validation, and Testing Sets

Data type

Training examinations Testing examinations

Data set Normal Cancer Data set Normal Cancer

Cases 70 e e 30 e e
Patches (A) 5.9 � 105 3.1 � 105 2.8 � 105 2.9 � 105 1.8 � 105 1.7 � 105

Patches (B) 2.7 � 105 1.0 � 105 1.6 � 105 1.6 � 105 7.5 � 104 7.9 � 104

Row A presents patches with a magnification of �40, �15, and �20; row B presents the patches with a magnification of �32 and �16.

HCC Detection Based on MSAN-CNN
Furthermore, pathologist labeling is subjective, and incon-
sistent annotations inevitably are likely to affect the training
process.

Weakly supervised detection is an emerging field that
addresses the annotation limitation of pixel-level detection,
and uses patch-level with class labels instead of pixel-level
labels. Several studies about weakly supervised detection
have been published recently.8,10e14 For instance, Priego-
Torres et al10 performed a weakly supervised automatic
segmentation of stained breast cancer images and obtained
0.956 segmentation accuracy and 0.925 frequency weighted
intersection over union. Motivated by the success of the
weakly supervised detection method, it was used for cancer
region detection of HCC,14 in which the model’s perfor-
mance was compared under �15 and �20 magnification, and
a segmentation accuracy of 0.880 and 0.872 was achieved,
respectively. That work focused only on single-scale detec-
tion. However, in the clinical diagnosis and grading of ma-
lignancy, pathologists often combine multimagnification
information, varying in spatial scale from the
subnuclear [zO (0.1 mm)] through cellular [zO (10 mm)]
and intercellular [zO (100 mm)], to glandular and other
higher organizational features [zO (1 mm)].7 Hence, the
performance of cancer region detection based on the infor-
mation of a single scale is artificially limiting.

To address the limitation of the single-scale detection
method, in this study, a multiscale attention learning strat-
egy was developed that was inspired by the action of the
pathologist (ie, the diagnosis and grading of malignancy
involving a range of different scales). Some studies have
adopted multiscale learning for liver cancer detection,7,15

and their results show its superiority compared with
single-scale detection methods. However, earlier works
typically used a simple method to fuse the features of
different scales, such as straightforward concatenation.7

They regarded all scales as equally important, which is
inconsistent with the pathologists’ process of clinical diag-
nosis. With this drawback in mind, an attention strategy was
introduced to dynamically learn the relative weight to attach
to different scales (ie, using the network to determine the
scales of information to focus on). This mechanism, termed
attention mechanism, has been introduced into deep learning
for medical image analysis tasks.16e22 For instance, Liu
et al16 proposed a deep residual-attention CNN to segment
ischemic stroke and white matter hyperintensity lesions
simultaneously in magnetic resonance images, in which they
The American Journal of Pathology - ajp.amjpathol.org
introduced an attention branch that included a trunk branch
and a dilated soft mask branch for generating (detecting)
high-quality features of the input images. Wang et al17

designed a voxel-wise weight map to allow the generator
to pay more attention to the lesion region. Lei et al19 pre-
sented a selfeco-attention network for automatic breast
anatomy segmentation, in which three attention mecha-
nismsdchannel-wise attention, spatial-wise attention, and
the co-attention mechanismdwere used to improve the
segmentation performance. These studies have proven that
the attention mechanism is effective in medical image
analysis. However, there are still few studies on the cancer
region detection of HCC in whole-slide pathologic images.

Here, an attention strategy was used in cancer region
detection and validated through a comparison of the different
performance metrics of a multiscale attention detection model
and a single-scale detection model. The results of the former
model were also compared against those of three patholo-
gists: a junior pathologist, an intermediate-level pathologist,
and a senior pathologist. To further verify how multiscale
attention affects the classification performance, the attention
maps that compared changes in the feature maps of single-
scale and multiscale inputs were visualized.

Materials and Methods

Data Set

One hundred liver WSIs were collected from a publicly
available web-based resource for cancer researchers (The
Cancer Genome Atlas, https://portal.gdc.cancer.gov, last
accessed October 28, 2019). The available 100 liver WSIs
were selected randomly from the database, and all selected
slides contained tumor tissues. These WSIs were acquired
by scanning formalin-fixed, paraffin-embedded hematoxylin
and eosinestained tissues using an Aperio AT Turbo (Leica,
Wetzlar, Germany) at the maximum available resolution of
�40 (0.25 um/pixel). The image-level annotation (normal or
tumor) was performed by two board-certified pathologists
with at least 15 years of clinical experience. In addition, to
compare the detection result produced by the proposed
method with pathologists, 37 tiles from the testing sets were
selected randomly and the other three pathologists with 2
years of experience (termed a junior pathologist), 8 years of
experience (termed an intermediate-level pathologist), and
more than 20 years of experience (termed a senior
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Figure 2 Illustration of the framework for automatic cancer region detection of hepatocellular carcinoma using multiscale attention convolutional neural
network architecture. A: Details of the multiscale attention convolutional neural network (MSAN-CNN) framework are indicated. B: The flowchart of experi-
mental process is indicated. The process was divided into a training phase and a predicting phase. (H, W) indicates height and width of the patch; n indicates
value of proportion. AdaPool, adaptive pooling; Attn, attention.
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pathologist) were invited to manually outline the pixel-level
cancer region of these selected tiles by using the Auto-
mated Slide Analysis Platform (version 1.9; https://github.
com/computationalpathologygroup/ASAP). These five
pathologists were from three different institutions.

Methods

Image Preprocessing
The preprocessing methods used for these different magni-
fication data sets were as follows: WSIs were first cut into
multiple tiles with 4096 � 4096 pixels using Python
556
(Beaverton, OR). Next, these tiles were categorized (as
normal or tumor) independently by two board-certified pa-
thologists with at least 15 years of clinical experience. Then,
the marked tiles were cropped into small patches with
448 � 448 pixels. Each patch was given an image-level
label, which was the same as the label of the tile from which
it came. The cropped patches labeled normal were cut from
the normal tiles, and no tumor tissue was included; the
patches labeled tumor were cut from the tumor tiles and no
normal tissue was included. Finally, the cropped patches
were resized as required by the network. Furthermore, to
improve robustness, some noisy images produced by the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Classification results of the patches. A: Classification result comparison of accuracy, area under curve (AUC), sensitivity, and specificity of the
three model configurations: Single_Scale, Mul_Scale_Attn_Cos, and Mul_Scale_Attn_Sgm. B: Receiver operating characteristic curves (ROCs) for the prediction
of three different combinations of multiscale inputs. Acc, accuracy; Mul-Scale-Attn-�15, combination of �15 þ �40 magnification; Mul-Scale-Attn-�16,
combination of �16 þ �32 magnification; Mul-Scale-Attn-�20, combination of �20 þ �40 magnification; Mul_Scale_Attn_Cos, multiscale attention
detection with the absolute value of cosine as the normalization function; Mul_Scale_Attn_Sgm, multiscale attention detection with sigmoid as the
normalization function; Sen, sensitivity; Single_Scale, single-scale detection; Spe, specificity.

HCC Detection Based on MSAN-CNN
Red-Green-Blue value of the blood vessels or staining im-
purities were added during the generation of patches. The
details of the preprocessing method are illustrated in
Figure 1A. Randomly selected examples of patches gener-
ated by preprocessing are shown in Figure 1B, in which the
examples of normal patches were selected from the normal
patch data sets, and the examples of tumor patches were
selected from the tumor patch data sets.

In the method proposed here, multiscale attention CNN
(MSAN-CNN),fivedifferent scale images (ie,�40,�32,�20,
�16, and �15) were used. The �40 magnification data used
the full resolution of a scan, and the �32 magnification data
were resized from the�40 data at the image level. For the�20,
�16, and �15 magnification data, images with �40 magnifi-
cation were scaled down to �20 and �15, and from �32 to
�16 at the patch level. The corresponding patch sizes were as
follows: 448 � 448 pixels for images of �40 magnification,
560� 560 pixels for images of�32magnification, 224� 224
Table 2 Results of Training and Validation Sets for Three Different Co

Data set Evaluation indicator Accuracy AUC

Validation set �16 þ �32 0.986 � 0.003 (S)
0.933 � 0.028 (C)

0.98
0.92

�15 þ �40 0.986 � 0.001 (S)
0.896 � 0.106 (C)

0.98
0.89

�20 þ �40 0.988 � 0.002 (S)
0.905 � 0.096 (C)

0.98
0.90

Testing set �16 þ �32 0.868 � 0.013 (S)
0.826 � 0.034 (C)

0.86
0.82

�15 þ �40 0.875 � 0.011 (S)
0.824 � 0.102 (C)

0.87
0.82

�20 þ �40 0.921 � 0.014 (S)
0.885 � 0.096 (C)

0.92
0.88

The best results on validation sets are shown in bold. Values are reported as m
AUC, area under the curve; C, cosine absolute value; S, sigmoid function.

The American Journal of Pathology - ajp.amjpathol.org
pixels for images of �20 and �16 magnification, and
168 � 168 pixels for images of �15 magnification. Further-
more, to increase the training sample, data augmentation by
horizontal flipping, vertical flipping, and rotation was used.
Details of the data set are shown in Table 1.

Multiscale Attention Mechanism

The core idea of the proposedmultiscale attentionmechanism
was that using attention weights to determine which scale of
the image contributes more to the classification result. Spe-
cifically, two differently scaled images (scale 1 and scale 2)
were fed into the backbone to extract features. Then, the scale
1 image was fed into an attention module to produce the
attention weight: a. Then, a was used to focus the scale 1
image and 1-awas used to focus the scale 2 image. If a> 0.5,
it meant that scale 1 images made a greater contribution to the
final classification result, and vice versa.
mbinations of Multiscale Inputs

Sensitivity Specificity

6 � 0.003 (S)
9 � 0.028 (C)

0.989 � 0.002 (S)
0.949 � 0.030 (C)

0.984 � 0.005 (S)
0.908 � 0.035 (C)

6 � 0.001 (S)
2 � 0.109 (C)

0.985 � 0.004 (S)
0.925 � 0.150 (C)

0.988 � 0.003 (S)
0.899 � 0.080 (C)

8 � 0.002 (S)
6 � 0.095 (C)

0.991 � 0.004 (S)
0.887 � 0.119 (C)

0.985 � 0.001 (S)
0.924 � 0.085 (C)

8 � 0.013 (S)
7 � 0.033 (C)

0.927 � 0.010 (S)
0.908 � 0.046 (C)

0.793 � 0.025 (S)
0.746 � 0.076 (C)

2 � 0.010 (S)
3 � 0.099 (C)

0.923 � 0.013 (S)
0.842 � 0.053 (C)

0.831 � 0.026 (S)
0.790 � 0.149 (C)

0 � 0.014 (S)
6 � 0.097 (C)

0.933 � 0.014 (S)
0.890 � 0.083 (C)

0.906 � 0.016 (S)
0.883 � 0.127 (C)

eans � SD using fivefold cross-validation.
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Figure 4 Qualitative results of the single-scale detection, multiscale attention with overlap detection and multiscale attention without overlap detection
methods. AeC: Column 1 shows three representative samples from different whole-slide images (WSIs), from each of which two tiles are selected for display
and analysis in columns 2 to 6. In the second to third columns are images of tiles (2), ground-truth (3); and in the fourth to the sixth columns are the results
of their analysis by single-scale (4), multiscale with overlap (5), and multiscale without overlap (6) methods, respectively. The white parts represent normal
regions, and the black parts represent tumor regions in the ground-truth and the predicted result. Scale bars Z 10 mm.

Diao et al
MSAN-CNN Architecture

In this section, the details of the proposed MSAN-CNN are
presented. The implementation details are shown in
Figure 2A. First, images of low and high scale, scale 1 and
scale 2, respectively, were fed into two separate backbones
to extract features, in which each backbone used the
VGG-1923 network. VGG is one of the state-of-the-art deep-
learning models for classification that won second place in
the ImageNet Large-Scale Visual Recognition Challenge
2014 competition. In a previous study,14 VGG-19, used as
the base network, yielded encouraging detection results.
Then, the features of scale 1 were fed into two branches.
The first branch was a classifier (termed Classifier 1)
combined with a set of connection layers, the activation
functions and dropout functions. The second branch was an
558
attention module that includes a set of convolution layers
and a normalization layer. The weights of attention were
produced by a normalized function:

aZ sigðFÞ ð1Þ

where F presents the features of scale 1, sig is the logistic
sigmoid function f(x) Z 1/[1 þ ê(-x)], and a is the learned
attention weight [(S) will be used to indicate the equation
hereafter].
At the same time, to make the length and width of features

consistent with scale 1, scale 2 was down-sampled by an
AdaPool operation (https://pytorch.org/docs/stable/nn.html?
HighlightZadaptive avgpool#pooling-layers, last accessed
September 26, 2021). Afterward, the down-sampled fea-
tures were fed into a classifier (termed Classifier 2) that was
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Visualization of the attention maps. A: Attention maps of the
baseline; ie, single-scale detection method of an input image that has a
magnification of �20. B: Attention maps of multiscale attention convolu-
tional neural network (MSAN-CNN); the blue dots represent the input image
that is a multiscale combination of�20þ �40 and the brown dots represent
the input image that is a multiscale combination of �15 þ �40.

HCC Detection Based on MSAN-CNN
identical to Classifier 1. Subsequently, a was multiplied by
the result of Classifier 1, and 1-a was multiplied by the result
of Classifier 2. Hence, the learned attention weights a and 1-
a were used to determine the importance of these different
scales. Finally, a fused classifier result was obtained ac-
cording to the following formula:

outputZc 1þ c 2 ð2Þ

where c_1 represents the weighted results of Classifier 1 and
c_2 represents the weighted results of Classifier 2.

Experiments

The proposed MSAN-CNN model was trained on extracted
patches with image-level labels from the proposed data set by
PyTorch on a NVIDIA GPU Tesla V100 (32G) (Santa Clara,
CA). The data sets were split randomly into 2 parts: 70 (70%)
WSIs were training data, which were used to train and vali-
date the model, and 30 (30%) WSIs were used to test the
trained model. Training and testing sets were kept indepen-
dent of each other (ie, the cases in the training set never
appeared in the testing set). In our experiment, fivefold cross-
validation was performed. The illustration of the workflow is
shown in Figure 2B, which is divided into the training pro-
cess and the testing process. During the training process, the
differently scaled patches were fed into the proposed MSAN-
CNN for classification. Three different combinations of
The American Journal of Pathology - ajp.amjpathol.org
patches as multiscale inputs were used (�20, �40; �15,
�40; and �16, �32). In which �20, �16, and �15 were
used as low-scale images, and �40 and �32 were used as
high-scale images. For the attention mechanism, two
normalization functions were used to generate attention
weight: the sigmoid and the absolute value of cosine. The
architecture and the hyperparameters included 32 mini-
batches and 80 epochs of this MSAN-CNN, which was
optimized on the training set using manual hyperparameter
tuning. The network was trained with Adam24 and, to avoid
overfitting, the model parameters that performed best on the
validation set were saved. During the testing process,
the small patches from the testing data set were classified by
the trained classifier. Our code is available at (GitHub,
https://github.com/SH-Diao123/MSAN-CNN, last accessed
November 10, 2021).

Post-Processing

After detection, the results undergo processing in the form
of aggregation operations based on the classification of the
patches. Herein, the probability of each patch was combined
independently for aggregation, and the probability of over-
lapping regions was excluded.

Evaluating MSAN-CNN Model Performance on The
Cancer Genome Atlas Data

To quantitatively evaluate the accuracy of cancer region
detection of HCC, the accuracy, sensitivity, specificity,
receiver operator characteristic curve, and area under the
curve (AUC) were used as metrics. A qualitative analysis of
HCC detection also was performed and an attention map
was visualized to better illustrate the advantages of the
proposed MSAN-CNN. Finally, the results were compared
with those of the three pathologists.

Results

Classification Results

Figure 3A compares the patch-level classification results of
normal and tumor classifications for three different modeling
configurations: Single_Scale, Mul_Scale_Attn_Cos, and
Mul_Scale_Attn_Sgm. Single_Scale, which is a single-scale
detection method using the �20 magnification patches as
the input of the classification neural network, was proposed
in a previous work.14 Mul_Scale_Attn_Cos and Mul_Sca-
le_Attn_Sgm were multiscale attention methods that used a
multiscale combination of input patches at magnifications of
�20 and �40. The difference between Mul_Scale_Attn_Cos
and Mul_Scale_Attn_Sgm is that they use different normal-
ization functions. The former uses the absolute value of
cosine as the normalization function and the latter uses the
sigmoid as the normalization function for realizing attention
to different multiscale combinations. Both of them used
559
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Figure 6 Detection performance measured with dice coefficient and
intersection over union (IOU) for comparison with a junior and an
intermediate-level pathologist on 37 different tiles. AeD: Detection
performance measured with dice coefficient on a junior, an intermediate-
level, and a senior pathologist, and the proposed model. E: Detection
performance measured with IOU on a junior, an intermediate-level, and a
senior pathologist, and the proposed model based on a violin plot.

Diao et al
multiscale combinations of input patches at magnifications of
�20 and �40. Figure 3A shows that the Mul_Sca-
le_Attn_Sgm model obtained the best results on all evalua-
tion metrics, and that the Mul_Scale_Attn_Cos module
obtained the second best detection performance. This shows
the effectiveness of the multiscale attention module in the
classification task. It also shows that the normalization
function affects the classification results (ie, a sigmoid is
preferable to the absolute value of cosine).

The MSAN-CNN model’s performance was tested further
under three additional multiscale combinations of input
patches: magnification patches of �20, �40; �15, �40; and
�16, �32. The results are listed in Table 2. Based on the
test data set, for accuracy, AUC, sensitivity, and specificity,
the best results were 0.921, 0.920, 0.933, and 0.906,
respectively. All of them were obtained at the magnification
combinations of �20, �40 (S). Moreover, the sigmoid
normalization function performed better than the absolute
value of the cosine normalization function. Furthermore, the
significance of the differences in accuracy, AUC, sensi-
tivity, and specificity among magnification patches of �20,
�40; �15, �40; and �16, �32 were evaluated using the
t-test. The results show all P values are less than 0.01,
suggesting that the improvement of �20, �40 (S) magni-
fication is statistically significant compared with other
multiscale inputs. The receiver operator characteristic curves
of three different combinations of multiscale inputs also
were shown, in which all of them used the sigmoid as the
normalization function. The results are shown in Figure 3B,
indicating that the greatest AUC occurs using the multiscale
combination of �20, �40 magnification. The multiscale
combination of �15, �40 magnification gets the second
AUC score.

Qualitative Analysis

Figure 4 shows the results of a qualitative comparison in
which the single-scale detection method was used on
magnification patches of �20, and the multiscale detection
method was used on multiscale combination magnification
patches of �20, �40. Single-scale detection for the first tile
of WSI A (first row of column 4) failed to detect most cancer
regions of HCC and mistakenly detected the normal regions
as tumor regions. However, the proposed MSAN-CNN, used
for the same tile, both with and without overlap (first row of
columns 5 and 6, respectively), had considerably fewer false-
positive and false-negative results. The second tile of WSI A
is largely covered with tumor regions and has few normal
regions. In this case, the single-scale detection method
detected most tumor regions but mistakenly detected the
normal regions as tumor regions (second row of column 4),
while the proposed MSAN-CNN correctly detected both the
normal and tumor regions (second row of columns 5 and 6).
This indicates that the proposed MSAN-CNN has the ability
to address class-imbalance cases. For WSI B, the single-scale
detection method failed to detect some small liver cancer
560 ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Performance Comparison in Terms of Dice Coefficients
between Our Presented Approach and State-of-the-Art Approaches

Model Dice

Unetþþ25 0.807 � 0.016
Deeplabv326 0.798 � 0.019
Lite R-ASPP27 0.849 � 0.003
Ours 0.861 � 0.024

HCC Detection Based on MSAN-CNN
regions. However, most liver cancer regions were detected
correctly with the proposed MSAN-CNN. In case of WSI C,
the results of the single-scale detection method failed to
detect cancer regions of HCC, while MSAN-CNN detected
them successfully. However, MSAN-CNN also incorrectly
identified some normal tissue as tumor tissue.

Visualization of the Attention Maps

To better understand how the multiscale attention module
improves the final classification result, the attention maps
were visualized (ie, scatter diagrams produced by averaging
the features of all channels from the last layer before the
classifier). The attentionmaps of the single-scale andMSAN-
CNN detection methods are shown in Figure 5, A and B,
respectively. The feature distribution of the single-scale
detection method is concentrated and single, so almost all of
the features play important roles in the classification results.
However, in the MSAN-CNN, only some features are
essential for the classification results and unimportant features
have values close to zero. This indicates that theMSAN-CNN
learns to discriminate between features better than the single-
scale detection method (ie, the MSAN-CNN model focuses
on the features that can distinguish the normal and the tumoral
parts of the tissue).

The Results Compared with Those of Pathologists

Figure 6 shows the results of a comparison between cancer
region detection of HCC using the proposed method against
that of three pathologists (a junior, an intermediate level, and a
senior pathologist) for 37 tiles. The dice coefficient was used
as the evaluation metric and recorded the numbers of dice
values greater than 0.6, less than 0.6, greater than 0.8, and less
than 0.8, respectively. As reported in Figure 6, A-D, for the
proposed model, the number of dice values greater than 0.6
and 0.8 was higher than in the case of both junior and
intermediate-level pathologists, and slightly lower than in the
case of a senior pathologist. To clearly show the advantages of
our model, the violin plot of the intersection over union was
compared for the junior-level, the intermediate-level, and
senior-level pathologists, and the MSAN-CNN, as illustrated
in Figure 6E. The median of the latter was higher than that of
either the junior pathologist or the intermediate-level
pathologist, and slightly lower than that of the senior
pathologist. The proposed model had a more concentrated
statistical distribution than that of the junior or intermediate-
The American Journal of Pathology - ajp.amjpathol.org
level pathologists, which shows that it generated more sta-
ble diagnostic results compared with those by these two pa-
thologists. Overall, this indicates that our model performs
better than the junior and intermediate-level pathologists, and
has the potential to generate detection results comparablewith
those of a senior pathologist.

The 37 tiles were selected randomly from the testing data
set and processed on a computer with the following exper-
iment setting: 32 core Intel I Xeon I CPU, E5-2620@2.10
GHz (Santa Clara, CA); Supermicro SYS-7048GR-TR
512.0G RAM (San Jose, CA); NVIDIA Tesla V100 GPU
with 64 G; Ubuntu 16.04 (London, UK); and Python 3.6.4
with PyTorch 1.0 platform (Menlo Park, CA). It should be
noted that our method generated detection results for every
tile and that it only took an average of 7 seconds for pro-
cessing of each tile, while the average time for the pathol-
ogist’s annotation is 10 minutes.
Comparison with State-of-the-Art Methods

The proposed MSAN-CNN was compared with three state-
of-the-art supervised segmentation methods: Unetþþ,25

Deeplabv3,26 and Lite R-ASPP.27 As reported in Table 3,
the proposed MSAN-CNN obtained an average dice coef-
ficient of 0.861, which beat all other supervised segmenta-
tion methods.
Discussion

Recently, deep learning has shown great potential in medical
image analysis in general,28 and in the analysis of liver cancer
regions based on computed tomography, magnetic resonance
imaging, and ultrasound in particular.29e31 However, the
pixel-level detection method of HCC based on deep learning
inWSI is a challenging task owing to the need of vast amounts
of ground-truth data to train the network. To address this
issue, many weakly supervised methods have been reported.
However, they focused mainly on the single-scale detection
method, while clinical diagnosis and grading of malignancy
often rely on information that varies in spatial scale. Some
tasks also have used multiscale information to detect the liver
cancer region, but failed to consider the importance of various
scales in different cases.

In the present work, MSAN-CNN was introduced as an
extension of a former, initial study.14 Compared with pre-
vious multiscale methods, a multiscale attention classifier
was used here, which is an easy way of mimicking the ac-
tion of pathologists who combine multimagnification in-
formation for diagnoses. The current experiments show that
the classification performance of our MSAN-CNN out-
performed the singe-scale detection method, as shown in
Figure 3A.

To explore the effect of different multiscale combina-
tions, three different multiscale combinations as the input of
the network were tested. The multiscale combination of
561
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magnifications of �20, �40 provided the best results in
terms of accuracy, AUC, sensitivity, and specificity, as
shown in Table 2 and Figure 3B.

Ablation studies were performed to study the effect of the
normalization functions on the attention mechanism. The
sigmoid function outperformed the absolute value of cosine
by showing better accuracy, sensitivity, specificity, and
AUC, as shown in Table 2 and Figure 3A. One explanation
is that the value of the sigmoid function is unique over large
intervals, while the absolute value of cosine is repeated.
Therefore, repeated values may give the same attention to
images of different scales, whereas, in fact, their contribu-
tions to the diagnosis result are different.

To test the performance of the proposed method in cancer
region detection, the study qualitatively evaluated the results
predicted by the different models, as shown in Figure 4. The
proposed MSAN-CNN was able to effectively reduce false-
positive and false-negative results compared with the single-
scale detection method.

To further illustrate how the multiscale attention model
affects the final classification results, the attention maps
were visualized, as shown in Figure 5. The MSAN-CNN
studied more discriminative features than the single-scale
detection method. The discriminative features make the
classification network better at distinguishing the normal
and the tumoral parts of the tissue.

In the present study, the results produced by MSAN-CNN
were also compared with those of the pathologists, using
dice value statistics and the medians of a violin plot. Our
MSAN-CNN performed better than the junior pathologist
and the intermediate-level pathologist. More importantly,
the proposed model obtained more stable diagnostic results
compared with the ones generated by these two patholo-
gists. The statistical distribution of the MSAN-CNN violin
plot was more concentrated than in the case of the junior
pathologist and the intermediate-level pathologist, as shown
in Figure 6E. Interestingly, the results of the proposed
model were slightly inferior to those of the senior patholo-
gist. However, the time spent by the MSAN-CNN method
was dramatically less than that required by the pathologists.

In conclusion, this study addressed the challenge of cancer
region detection of HCC based on a single scale by using a
multiscale attention convolutional neural network. Therefore,
the pipeline proposed here has good potential as a tool for
assisting pathologists to delineate cancer regions. The pro-
posed MSAN-CNN framework has shown promising results.
However, in this study it only distinguished between two
categories: normal and tumor. Future work will focus on the
detection of multiple tumor types simultaneously.
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